
Comparison of relation (i0) with the quantity f(~o) [see formula (5)], shows that when 
Re > i0, the best agreement is when a = 0.72. 

NOTATION 

r,e, spherical coordinates; ~, flow function; Vr, vG, velocity components; ~, vorticity; 
C, concentration; ~ = ~d/~c, ratio of viscosities of the dispersed and continuous phases; U, 
velocity of steady motion of liquid; a, radius of sphere; v, kinematic viscosity of medium; 
D, coefficient of diffusion; k, mass-transfer coefficient; Nu = 2ka/D, Nusselt number; Pe = 
2Ua/D, Peclet number; Re = 2Ua/v, Reynold's number; Pr = v/D, Prandtl number. Indices: i, 
drop; 2, solid sphere; d, dispersed phase; c, continuous phase; s, point of flow separation; 
0, values at the surface of the sphere. 
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UNSTEADY MASS TRANSFER WITH A HETEROGENEOUS CHEMICAL 

REACTION DURING LAMINAR FLOW PAST A SPHERE 

B. M. Abramzon, V. Ya. Rivkind, and G. A. Fishbein UDC 532.72 

Unsteady mass transfer toward a solid sphere is investigated in the region of 
Peclet numbers 1 ~ Pe ~ i000. Diffusion flow in the presence of a first-order 
chemical reaction is calculated and the relaxation time of the steady regime 
as a function of the Peclet number is determined. 

The process of mass transfer between a moving spherical particle and a continuous flow 
was investigated earlier in a quasistationary approximation for limiting cases of small and 
large Peclet (Pe) values. In [i, 2] solutions were obtained for small Pe values by the method 
of joining asymptotic expansions [3]. Although theoretically this method is suitable only 
for Pe < i, the results of such calculations were used sometimes also for Pe > i. Solutions 
obtained in an approximation of the theory of a diffusion boundary layer are known for large 
Pe (see, for example, [4, 5]). In the transition region of Peclet numbers (i < Pe ~ i00), 
when the diffusion boundary layer has still not formed and the contribution to the magnitude 
of the diffusion flow from the molecular and convective terms in the transfer equation is 
commensurable, the field of concentrations cannot be determined by a single one of the aP- 
proximate methods. In [6] the problem of steady mass transfer was solved for the particular 
case of evaporation of water drops by the finite-difference method for 0 < Pe ~ 200. In 
this article we will consider the most general case when the transfer process is unsteady and 
a chemical reaction occurs on the surface of the particle. 
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For axisymmetric flow past a particle the equation of convective transfer can be writ- 

ten in the form 

Ox - -  r - f -  Or r2sinO O0 O0 - - - ~ -  V~ ~ - r  + - - - - r  O0 " (1) 

The velocity components Vr and V e are determined in terms of the stream function by the 

formulas 

1 O~ . Vo = 1 O~ 
V~ = r~sinO O0 ' rsinO Or 

Equation (i) is considered with the following boundary conditions. On the surface of 
the sphere in the case of pure mass transfer 

zTr=l = 0, 

and for mass transfer accompanied by a chemical reaction 

(2) 

Far from the sphere 

t ' ~ l  * 

H Oz = z lr~, �9 (3) 
Or 

z I~| = 1. (4) 

It is assumed that at the initial instant the concentration of matter in the environment 
surrounding the particle is everywhere constant and equal to ci, i.e., 

zj,:=o,~> = 1. (5) 

The formulated problem is considered for a particle moving at Re < 40. For Re << 1 a 
Stokes velocity field is assigned. For 1 < Re < 40, the values of the stream function ob- 
tained by numerical integration of the Navier--Stokes equations, which are tabulated in [7], 
are used. 

The intensity of mass transfer is characterized by the value of the total diffusion flow 

s i n O d O .  �84 I = 2 n D a c  I .') ( 6 )  
\ Or , ~=i 

0 

The values of the local and average Sherwood numbers are of interest for mass transfer 
without a chemical reaction: 

Sh o = 2 ' dz 

S h = ~  ~ She sinOdO. 
~ j  

0 

(8) 

The problem was solved by the net-point method. The transformation r = exp x was in- 
troduced with respect to the radial coordinate, which made it possible to obtain with a uni- 
form step with respect to x a crowding of the coordinate lines near the surface where the 
concentration gradients are large. The algorithm chosen was one of the variants of the pre- 
dictor-correcter type schemes. In the first two half-steps with respect to time we used the 
method of variable directions [8] with unilateral difference quotients in first-order derive- 

*Since in the presence of a chemical reaction the concentration of matter on the surface of 
the particle is a function" of angle e, in Eqs. (i) and (3) the dimensionless concentration is 
determined as z = c/c~. k~en H + 0 (diffusion regime of absorption of matter) boundary con- 
dition (3) changes to (2). 
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Fig. i. Sh/Sho vs T for various Pe and Re << i. 
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the points denote calculations made in 
this article; I) by Eq. (i0); 2) according to data in [i]; 
3) according to data in [2]; 4) by Eq. (ii); 5) by Eq. (12). 

tives. At the next step correction was accomplished according to an explicit scheme in which 
the first-order derivatives were approximated by central difference quotients. The given 
scheme provides uniform stability with respect to steps Ax, AT, and the Pe number. 

The calculations were made on an M-222 computer with net N r = 25-40, N 0 = 24. Boundary 
condition (4) was set at different distances from the surface of the particle depending on 
the Pe value. For Pe ~ 1 the outer boundary was chosen at a distance of about i00 radii of 
the sphere. For Pe ~ i00-i000 this distance was reduced to 12-8 radii of the sphere, re- 
spectively. 

It is known that at the initial instant the coefficients of mass transfer are consider- 
ably greater than in the case of a steady regime. However, in practice one often uses a 
quasistationary approximation, assuming that the relaxation time mr, i.e., the time during 
which a steady distribution of concentrations is established around the particle, is negli- 
gibly small in comparison with the total time of the process. It has been shown in [9] that 
for the case of unsteady mass transfer with a motionless medium (Re = 0) the value of the 
Sherwood number only upon lapse of time Tr = 100 approximates to its steady-state value Sho = 
2 with an error of about 5%. According to [9] the intensity of transfer is determined by the 
formula 

s h = 2  1 
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Fig. 3. 
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Fig. 4. Local values of the Sherwood 
number in a Stokes regime. The 
values of the Pe number are denoted 
by figures; the dashed-dot line was 
plotted by Eq. (13) for Pe = i000; 8, 
deg. 
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Fig. 5. Mass transfer of a sphere with 
a first-order chemical reaction on the 
surface (Re = 20, sC = i). Solid 
curves: values of the surface concen- 

tration co for various H. 

The relaxation time of the diffusion process for a moving particle depends substantial- 
ly on the Pe number. Figure 1 shows Sh/Sho as a function of T for a Stokes flow regime for 

different Pe values. Curves 2, 3, 4, and 5 correspond to values Pe = i, I0, i00, and i000. 
Curve 1 was plotted for Pe = 0 in conformity with (9) and curve 6 for Pe = i000 on the basis 
of the data of Konopliv and Sparrow [I0], in which the problem of unsteady transfer was solved 
for large Pe in an approximation of the diffusion boundary layer. As we see from the graph, 
with an increase of Pe the relaxation time drops noticeably. For instance, ~r = i0 for Pe = 
i, and T r = 0.02 for Pe = i000. For large Pe, according to [I0], ~r ~ I/Pe2/3" 

Figure 2 presents th~ calculation of the steady-state Sherwood number for a Stokes flow 
regime when 1 < Pe < i000. For small Pe (Fig. 2a) the results of the numerical calculations 
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TABLE i. Calculation of Mass Flow toward a Chemical React- 
ing Sphere 

Pe 

20 

40 

100 

.Re 

20 

40 

~I 

Sho 

4,281 

H 

0,1 
0,2 
0,4 
1,0 

0,5 

1/Io 

Exact cal- Calculation 
culation by Eq. (14) 

0,829 
0,707 
0,544 

0,321 

5,363 

5,384 0,2 
0,5 
1,0 

0,432 

0,659 
0.432 
0,274 

0,821 
0,701 
0,542 
0,320 

0,435 

0,640 
0,418 
0,267 

!Calculation 
iby Eq. (15) 

0,824 
0,700 
0,539 
0,318 

0,427 

0,650 
0,426 
0,271 

are compared with the solutions obtained by the method of joining asymptotic expansions [I, 
2] (curves 2 and 3). Curve 1 is plotted according to the Brauer interpolation formula [ii] 

0.333Pe ~176 
Sh o = 2 +  1+0.331PeO.5O7. (10) 

As follows from Fig. 2a, the approximate solutions [i, 2] can be used only when Pe~ 
0.5. In Fig. 2b, where calculations for Pe < i000 are given, curve 4 is plotted according to 
the formula 

Sh o = 0,991 l /Pc ,  (Ii) 

obtained in [i, 4] by diffusion boundary-layer methods. In [12] the expression 

Sh o = 0.922 + 0.991 ~p-e (12) 

was obtained by using a more accurate expression for the stream function near the particle's 
surface, which is represented in Fig. 2b by curve 5. It should be noted that although Eq. 
(12) already when Pe > i0 gives a satisfactory accuracy for Sho, the diffusion boundary layer 
still does not exist for such low Pe. This is seen directly from Fig. 3 where the concentra- 
tion fields around the particle are shown for various Pe. Even when Pe = i000 the main drop 
of concentrations in the front part of the sphere is concentrated at a distance of about 0.2 
of the radius, which, strictly speaking, does not permit considering the diffusion boundary 
layer to be completely formed. However , despite this the local values of Sho when Pe = i000 
are in satisfactory correspondence (except for the rear region of the sphere) with calcula- 
tions by the equation 

sin 0 Pe ~ 
Sho = 1.25 

( 0 - -  si~20) '/a ' (13) 

obtained in an approximation of the boundary layer [4] (see Fig. 4). 

The results of calculating mass transfer of a chemically reacting sphere are shown in 
Fig. 5, where for Re = 20, Sc = i, and various values of complex H the distribution of the 
surface concentration as a function of angle e is presented. The considerable difference of 
concentrations between the front and rear parts of the surface of the sphere is a consequence 
of the fact that different regions of the sphere's surface are not equally accessible in a 
diffusion respect. This is confirmed by the character of the distribution of the local value 
of the Sherwood number for mass transfer without a chemical reaction (dashed line in Fig. 5). 

In [13] an approximate method was proposed for calculating a diffusion flow toward a 
reacting surface, according to which the effect of the chemical reaction on the mass-transfer 
coefficients is disregarded (method of equally accessible surface). In conformity with this 
method the total diffusion flow on the sphere can be determined by the equation 
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I = I  o . 2 + S h o , o H  
0 

The averaged method of equally accessible surface is often used for practical calcula- 
tion. In this case, 

2 
I = I o 

2 + ShoH " (15) 

The results of the exact solution for some values of the parameters are compared with 
the approximate calculations of Eqs. (14) and (15) in Table i. The divergence in the values 
of the total mass flow calculated by the exact and approximate methods does not exceed 2%. 

NOTATION 

Pe = 2Ua/D, Peclet number; Re = 2Ua/~, Reynolds number; Sc = ~/D, Schmidt number ; c, 
'relative mass concentration of component being transported; Co, cI, concentrations on the 
surface of the sphere and in the incident flow, respectively; z = (c -- co)/(cl -- co), dimen- 
sionless concentration; r, radial coordinate; e, angular coordinate; t, time; T = Dt/a 2, 
dimensionless time (Fourier number); a, radius of the sphere; D, diffusion coefficient; ~, 
coefficient of kinematic viscosity; U, velocity of incident flow; Vr, Ve, radial and tangen- 
tial velocity components; ~, stream function; K, rate constant of first-order chemical reac- 
tion; Da = Ka/D, Damkohler number; H = i/Da; I, total mass flow on sphere; Io, flow in a 
purely diffusion regime; She, local value of Sherwood number; Sh, average Sherwood number; 
She, Sherwood number in steady regime; x, transformed radial coordinate; Ax, step with respect 
to x; AT, step with respect to T; N r, Ne, number of steps with respect to the radial and 
angular coordinate, respectively; Tr, relaxation time of diffusion process. 
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